Robust design of compact axial compressor

Author:

Zeng Cong1ORCID,Chen Shaowen1,Liu Hongyan2

Affiliation:

1. School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, China

2. Hangzhou Hikvision Digital Technology Co., Ltd, Hangzhou, China

Abstract

The method of connection weights in neural networks was used to analyze the sensitivity of the compressor rotor, and the Back Propagation Neural Network (BPNN) was used to construct the analysis relationship between the compressor rotor's geometries and the performance based on the training and learning of the data base, and the prediction accuracy can reach more than 99.99%. Then the modified Grason Algorithm based on the neural network connect weights was used to quantify the contribution of the geometrical effects on its performance. The result shows that the tip clearance contributes 11.43% (efficiency sensitivity analysis) and 10.18% (pressure ratio sensitivity analysis) to compressor performance changes. This study focuses mainly on the robust optimization of tip clearance. Non-intrusive probability collection point method (NIPC) was adopted for the uncertainty propagation. The robust optimization method based on BPNN agent model coupled with multi-objective genetic algorithm Non-dominated sorting genetic algorithm-II (NSGA II) was used to perform the optimization. Compared to the design prototype, the variance of robust compressor rotor's efficiency could be reduced by 21.04%.

Funder

National Science and Technology Major Project

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3