Mechanical Work Potential

Author:

Miller Robert J.1

Affiliation:

1. University of Cambridge, Cambridge, UK

Abstract

This paper considers the effect of heat transfer between fluid streams on the work output of a turbine. To correctly characterize the effect of heat transfer requires a new property, ‘mechanical work potential’, which is a measure of the maximum useful work that can be extracted from a fluid by an isentropic turbine exhausting to a fixed exit static pressure. A balance equation for the property, over a control volume, is developed. The equation shows that entropy creation through thermal mixing has no effect on turbine work. It does, however, show that a second heat transfer term, ‘thermal creation’, does alter turbine work. Thermal creation occurs in regions of the turbine where heat transfer occurs across a finite pressure difference. The term is the non-linear version of the acoustic energy creation term proposed by Lord Rayleigh in his thermo-acoustic criterion. The balance equation is then used to link local regions of thermal creation to changes in stage efficiency. The method is used to show that, in a modern high pressure turbine stage, heat transfer due to thermal mixing in the freestream causes a negligible change in efficiency and therefore can be ignored in the design process. The method is also used to show that heat transfer due to convective cooling results in ∼0.5% rise in stage efficiency. This is a significant and should be accounted for in the design process.

Publisher

American Society of Mechanical Engineers

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3