Flexible Seal Strip Design for Advanced Labyrinth Seals in Turbines

Author:

Herrmann N.1,Dullenkopf K.1,Bauer H.-J.1

Affiliation:

1. Karlsruhe Institute of Technology, Karlsruhe, Germany

Abstract

The paper discusses the potential benefit of flexible seal strips in labyrinth seals for turbines. By reducing the radial stiffness compared to a standard straight and stiff knife, seal clearance could be reduced without significantly reducing the seal durability and long-term performance. As contact between the seal strips and the rotor can occur especially during transient operating phases, a more flexible design of the seal strips can prevent damage and wear, keeping the discharge rates constantly low. However, the pressure difference across the fin will cause a deflection of the seal strip due to the increased flexibility and thus creating an additional possible risk for an unwanted contact. Pressure balanced designs and supports on the low pressure side are used on the investigated seal designs to eliminate that risk. To give evidence of possible performance gain a standard labyrinth seal configuration is compared to two configurations with segmented and curved seal strips. In a first step, the discharge coefficient and the leakage rates for the nominal seal design are calculated using two-dimensional CFD. In order to investigate the impact of a worn seal tip on the leakage flow, the geometry change due to a rubbing event is simulated with FEA tools. Therefore, a specific high-speed wear model is implemented and calibrated by experimental data, enabling the correct cooling effects and plastic deformation. The discharge coefficient and the leakage mass flow rates of the worn geometry are then again modeled with CFD for the various seal configurations and compared to the unworn state. The study shows that a wise combination of the advantages of flexible curved seal strips can be used to reduce the leakage rates significantly, improving the life time of seal elements at the same time.

Publisher

American Society of Mechanical Engineers

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3