Experimental Investigation on Wear Behavior of Rectangular Labyrinth Fin Against High-Speed Rotor

Author:

Yan Xin1,Dai Xinbo1

Affiliation:

1. Institute of Turbomachinery, Xi'an Jiaotong University, Xi'an 710049, China

Abstract

Abstract The wear behaviors of the rectangular labyrinth seal fin against high-speed rotor were experimentally investigated on the incursion test rig. The material losses, worn geometries, frictional temperature distributions, and contact forces of labyrinth fin in rubbing events were measured at three incursion rates, three final incursion depths and two rotor sliding velocities. The morphologies of the worn labyrinth fin tips were magnified to reveal the wear mechanisms in rubbing events. The transient temperatures and contact forces were detailed to analyze the thermal–mechanical interactions between two contacting parts. The results show that the material loss percentage in the labyrinth fin is higher at the early stage of rubbing process, accounting for 18% mass loss of the worn region, than at final stage. The material loss is decreased with increasing the incursion rate. The incursion rate and final incursion depth have pronounced effects on the mushroom region extensions and curlings. The friction coefficient is fluctuated significantly in the high sliding velocity and low incursion rate conditions, and the averaged value of friction coefficient is about 0.1–0.125 among all experiments. The temperature at labyrinth fin tip is increased with increasing the final incursion depth, incursion rate, and sliding velocity. However, the temperature at fin tip is not increased further as it reaches about 1200 °C. The heat convection from hot fin to ambient plays an important role in worn geometries and transient temperature distributions at fin tip.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shaanxi Province

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference22 articles.

1. Sealing in Turbomachinery;J. Propul. Power,2006

2. Advanced Seal Technology Role in Meeting Next Generation Turbine Engine Goals,1998

3. Axial Turbine Blade Tips: Function, Design, and Durability;J. Propul. Power,2006

4. HPT Clearance Control (Intelligent Engine Systems)-Phase I-Final Report,2004

5. Wear Prediction of Strip Seals Through Conductance,2004

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigations into rubbing wear behavior of honeycomb land against labyrinth fin with periodic-cell model;Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy;2024-08-27

2. Numerical investigations into the rubbing wear behavior of honeycomb seal;Journal of Mechanical Science and Technology;2023-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3