Far-Field Noise Control in Supersonic Jets From Conical and Contoured Nozzles

Author:

Kim Jin-Hwa1,Kearney-Fischer Martin1,Samimy Mo1,Gogineni Sivaram2

Affiliation:

1. Ohio State University, Columbus, OH 43235

2. Spectral Energies, LLC, Dayton, OH 45431

Abstract

Plasma actuators are used to control far-field noise in Mach 1.65 jets from contoured and conical supersonic axisymmetric nozzles (henceforth, contoured and conical jets, respectively). The contoured nozzle is designed using the method of characteristics for a shock-free jet. The conical nozzle has converging and diverging conical sections with a sharp throat. Eight plasma actuators, distributed uniformly around the nozzle exit, are used and the jet is forced with azimuthal modes (m) 0–3 and ±4 and forcing Strouhal numbers ranging from 0.09 to 4.0. The far-field acoustic noise is measured by a linear microphone array covering polar angles from 25 deg to 80 deg relative to the jet axis. In both jets, the lower forcing azimuthal modes (m=0 and 1) are less effective than the higher modes (m=2, 3, and ±4), which have similar levels of overall sound pressure level (OASPL) reduction. At shallow angles relative to the jet axis, the reduction in OASPL is about 1.6–1.8 dB at low forcing Strouhal numbers in both jets at the most effective forcing mode of m=3. However, the OASPL in the sideline direction is only slightly increased (about 1 dB) for both the contoured and conical jets at m=3. The reduction at shallow polar angles is related to the decrease in the peak mixing noise level in both jets. The range of forcing Strouhal numbers providing significant noise reduction and the range of polar angles over which the noise is reduced are both much larger in the conical jet compared with the contoured jet. The screech tones are also reduced or suppressed – most likely due to weakening of naturally occurring structures by forcing.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3