Affiliation:
1. Department of Mechanical Engineering, Kingston University, London SW15 3DW, UK
Abstract
Ensuring the safety of space flights and solving the problems of reducing acoustic loads during the launch of space vehicles requires not only the development of new technical systems for launch complexes, but also methods for the numerical simulation of fluid and aeroacoustic fields generated by supersonic jets. The growing regulations for space vehicle noise also explain the interest in developing models and techniques that anticipate flow and the aeroacoustic characteristics of supersonic jets. Together with integral techniques for computing far-field noise, development of relevant mathematical models and implementation of numerical tools, the concepts of computational fluid dynamics (CFD) and computational aeroacoustics (CAA) are covered. The noise generated by a supersonic underexpanded jet is used to illustrate the capabilities of current numerical modelling and simulation tools. The jet structure, flow properties, and aeroacoustic quantities are affected by the nozzle pressure ratio. The outcomes of numerical simulation are contrasted with existing experimental and computational data. The available numerical modelling and simulation tools facilitate the development of novel computational methods and methodologies for challenges in CFD and CAA, in addition to solving research and engineering problems.