Near-Neutral pH SCC of Two Line Pipe Steels Under Quasi-Static Stressing Conditions

Author:

Zheng W.1,Bibby D.1,Li J.1,Bowker J. T.1,Gianetto J. A.1,Revie R. W.1,Williams G.1

Affiliation:

1. CANMET Materials Technology Laboratory, Natural Resources Canada, Ottawa, ON, Canada

Abstract

Most published SCC results for the near-neutral pH condition were produced under cyclic loading. However, the presence of stress corrosion cracks in pipeline systems involving very small pressure fluctuations suggests the cracking should initiate and grow without large dynamic loads. This study was designed to investigate this issue. A Grade 448 (X-65) line pipe steel and a prototype Grade 550 (X-80) steel were evaluated in near-neutral pH solutions. The maximum stress applied was at 95% of the respective yield strengths and the R values applied were between 0.98 and 1.0. Two solutions were used for each steel: NS4 and NS4/clay mixture. The solutions were purged with a gas mixture of 95%N2 and 5%CO2. Recognizing that the crack propagation rate can be very slow under such near-static conditions, relatively long-term tests were carried out. The durations of the three tests using the prototype Grade 550 (X-80) steel were 110 days, 54 days and 26 days, and the duration for the X-65 steel was 110 days. After 110 days, the majority of the cracks in the Grade 550 (X-80) steel were in the range of 5 to 30 micrometers (μm) deep, giving an average crack propagation rate of 2*10−9 mm/s. Tests at short durations revealed that only a few cracks were detectable after 26 days and that several more cracks were produced after 54 days. So majority of the cracks in the 110-day were likely produced after 54 days of testing. The NS4/clay mixture was found to be less aggressive than the NS4 solution for both steels studied. The cracks in the prototype Grade 550 (X-80) steel were deeper and more numerous in comparison with the X-65 steel. Possible reasons for this observation are also explored in terms of the presence of martensite-austenite (MA) phase in the Grade 550 (X-80) steel.

Publisher

ASMEDC

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3