Steady, Two-Dimensional, Natural Convection in Rectangular Enclosures With Differently Heated Walls

Author:

Chen K. S.1,Ho J. R.1,Humphrey J. A. C.2

Affiliation:

1. Department of Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan 800, Republic of China

2. Department of Mechanical Engineering, University of California, Berkeley, CA 94720

Abstract

Numerical results are presented for steady natural convection in two-dimensional rectangular enclosures in which the side walls, top wall, and bottom wall are at uniform temperatures θs, θt, and θb, respectively, and θs > θt > θb. Raylight numbers ranging from 104 to 107 and aspect ratios of 1 and 1.5 were investigated. The top wall was modeled as an impermeable rigid surface or an impermeable free-moving boundary. The calculations reveal two flow regions. In the upper part of the enclosure two large counterrotating cells appear, separated by a descending plume of fluid. Near the bottom wall the flow is almost motionless and stably stratified. The temperature in the central portion of the enclosure is almost uniform due to mixing by the recirculating cells. A temperature inversion occurs near the top wall and is particularly noticeable at high Rayleigh numbers. At high Rayleigh numbers the flow breaks up into smaller cells. The result is that each main recirculation region develops a secondary counterrotating eddy within it. The condition of a free surface as the top wall boundary condition significantly affects the circulation and heat transfer throughout the flow domain. Numerical experiments reveal the extent to which the flow field in the enclosure is affected by an asymmetric specification of side-wall temperature boundary conditions.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3