Affiliation:
1. University of Tennessee, Department of Nuclear Engineering, Pasqua Engineering Building, Knoxville, TN 37996-2300 e-mail:
Abstract
This article describes the light water reactor optimizer (LWROpt), a fuel cycle optimization code originally developed for BWRs, which has been adapted to perform core fuel reload and/or operational control rod management for pressurized water reactors (PWRs) and small modular reactors (SMRs), as well. Additionally, the eighth-core symmetric shuffle option is introduced to help expedite large-scale optimizations. These new features of the optimizer are tested by performing optimizations starting from a base case of an SMR core model that was developed manually and unrodded. The new fuel inventory (NFI) and loading pattern (LP) search in LWROpt was able to eliminate all of the constraint violations present in the initial base solution. However, independent control rod pattern (CRP) searches for the best several LPs found were not successful in generating CRPs without any constraint violations. This indicates that fully decoupling the fuel loading from the CRP optimization can increase the computational tractability of these calculations but at the expense of effectiveness. To improve on the individual search results, a coupled fuel loading (NFI and LP) and CRP search was performed, which produced a better overall result but still with some small constraint violations, emphasizing the fact that optimizing the fuel loading arrangement in a small high-leakage unborated core while concurrently determining its operational rod patterns for a 4-year operational cycle is no easy feat even to an experienced core designer; thus, this process can be greatly aided by employing automated combinatorial optimization tools.
Subject
Nuclear Energy and Engineering,Radiation
Reference18 articles.
1. BWROPT: A Multi-Cycle BWR Fuel Cycle Optimization Code;Nucl. Eng. Des.,2015
2. Ottinger, K. E., 2014, “Multi-Cycle Boiling Water Reactor Fuel Cycle Optimization,” Ph.D. thesis, http://trace.tennessee.edu/utk_graddiss/2720.
3. Ottinger, K. E., Collins, P. E., Luciano, N. P., and Maldonado, G. I., 2015, “SMR Fuel Cycle Optimization and Control Rod Depletion Using NESTLE and LWROPT,” Proceedings of ANFM 2015, Hilton Head Island, SC, American Nuclear Society Scientific Publications, Lagrange Park, IL.
4. Parallel Simulated Annealing by Mixing of States;J. Comput. Phys.,1999
5. Code Abstract - NESTLE: A Few-Group Neutron Diffusion Equation Solver Utilizing the Nodal Expansion Method for Eigenvalue, Adjoint, Fixed-Source Steady-State and Transient Problems;Nucl. Sci. Eng.,1995
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献