Dynamic Features of a Planetary Gear System With Tooth Crack Under Different Sizes and Inclination Angles

Author:

Chen Zaigang,Shao Yimin1

Affiliation:

1. e-mail:  State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing, 400030, P.R. China

Abstract

Planetary gears are widely used in the industry due to their advantages of compactness, high power-to-weight ratios, high efficiency, and so on. However, planetary gears such as that in wind turbine transmissions always operate under dynamic conditions with internal and external load fluctuations, which accelerate the occurrence of gear failures, such as tooth crack, pitting, spalling, wear, scoring, scuffing, etc. As one of these failure modes, gear tooth crack at the tooth root due to tooth bending fatigue or excessive load is investigated; how it influences the dynamic features of planetary gear system is studied. The applied tooth root crack model can simulate the propagation process of the crack along tooth width and crack depth. With this approach, the mesh stiffness of gear pairs in mesh is obtained and incorporated into a planetary gear dynamic model to investigate the effects of the tooth root crack on the planetary gear dynamic responses. Tooth root cracks on the sun gear and on the planet gear are considered, respectively, with different crack sizes and inclination angles. Finally, analysis regarding the influence of tooth root crack on the dynamic responses of the planetary gear system is performed in time and frequency domains, respectively. Moreover, the differences in the dynamic features of the planetary gear between the cases that tooth root crack on the sun gear and on the planet gear are found.

Publisher

ASME International

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3