Vibration sideband modulation mechanism and analytical signal modelling of the ring gear in a planetary gear set

Author:

Dai He1ORCID,Wang Yinbo2,Luo Shunan2,Zi Bin1

Affiliation:

1. School of Mechanical Engineering, Hefei University of Technology, Hefei, PR. China

2. State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, PR. China

Abstract

To address the vibration and modulation sideband mechanism problems, this paper proposes a dynamic model for the planetary gear transmission (PGT). Based on the time-varying vibration transfer path analysis, a novel analytical vibration signal model is derived using the mode superposition method to study the vibration characteristics of the ring gear. In the presented signal model, we analyze the complicated modulation sidebands in terms of frequency and reveal the amplitude modulation effect of the carrier. Results show that amplitudes of modulation sidebands are slightly asymmetric for a single planet system, while the amplitudes of modulation sidebands are asymmetric for the multiple planets system. Furthermore, methods for suppressing the vibration are proposed by designing the appropriate planet position angles, meshing phasing, and load sharing performance. Finally, simulation and experimental signals are compared to verify the proposed model. The result shows that experimental signals keep good consistency with the simulated signals.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3