Material Characterization of Candidate Silicon Based Ceramics for Stationary Gas Turbine Applications

Author:

Parthasarathy Vijay M.1,Price Jeffrey R.1,Brentnall William D.1,Graves George2,Goodrich Steven2

Affiliation:

1. Solar Turbines Incorporated, San Diego, CA

2. University of Dayton Research Institute, Dayton, OH

Abstract

The Ceramic Stationary Gas Turbine (CSGT) Program is evaluating the potential of using monolithic and composite ceramics in the hot section of industrial gas turbines. Solar Turbine’s Centaur 50 engine is being used as the test bed for ceramic components. The first stage blade, first stage nozzle and the combustor have been selected to develop designs with retrofit potential, which will result in improved performance and lowered emissions. As part of this DOE sponsored initiative a design and life prediction database under relevant conditions is being generated. This paper covers experiments conducted to date on the evaluation of monolithic silicon based ceramics. Mechanical property characterizations have included dynamic fatigue testing of tensile as well as flexural specimens at the temperatures representative of the blade root, the blade airfoil and the nozzle airfoil. Data from subcomponent testing of blade attachment concepts are also included.

Publisher

American Society of Mechanical Engineers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3