Creep Performance of Candidate SiC and Si3N4 Materials for Land-Based, Gas Turbine Engine Components

Author:

Wereszczak A. A.1,Kirkland T. P.1

Affiliation:

1. High Temperature Materials Laboratory, Oak Ridge National Laboratory, Oak Ridge, TN 37831

Abstract

The tensile creep-rupture performance of a commercially available gas pressure sintered silicon nitride (Si3N4) and a sintered silicon carbide (SiC) is examined at 1038, 1150, and 1350°C. These two ceramic materials are candidates for nozzles and combustor tiles that are to be retrofitted in land-based gas turbine engines, and interest exists to investigate their high-temperature mechanical performance over service times up to, and in excess of, 10,000 hours (≈14 months). To achieve lifetimes approaching 10,000 hours for the candidate Si3N4 ceramic, it was found (or it was estimated based on ongoing test data) that a static tensile stress of 300 MPa at 1038 and 1150°C, and a stress of 125 MPa at 1350°C cannot be exceeded. For the SiC ceramic, it was estimated from ongoing test data that a static tensile stress of 300 MPa at 1038°C, 250 MPa at 1150°C, and 180 MPa at 1350°C cannot be exceeded. The creep-stress exponents for this Si3N4 were determined to be 33, 17, and 8 for 1038, 1150, and 1350°C, respectively. The fatigue-stress exponents for the Si3N4 were found to be equivalent to the creep exponents, suggesting that the fatigue mechanism that ultimately causes fracture is controlled and related to the creep mechanisms. Little success was experienced at generating failures in the SiC after several decades of time through exposure to appropriate tensile stress; it was typically observed that if failure did not occur on loading, then the SiC specimens most often did not creep-rupture. However, creep-stress exponents for the SiC were determined to be 57, 27, and 11 for 1038, 1150, and 1350°C, respectively. For SiC, the fatigue-stress exponents did not correlate as well with creep-stress exponents. Failures that occurred in the SiC were a result of slow crack growth that was initiated from the specimen’s surface.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3