Affiliation:
1. The Griscom-Russell Company
2. Research-Test Department, The Griscom-Russell Company, Massillon, Ohio
Abstract
Interference-fit finned tubes depend for their heat-transfer capability upon a contact pressure between fin and tube. The bond resistance under such conditions is relatively small compared to the other resistances in the heat-flow path. At elevated temperatures, however, differential thermal expansion between fins and tubes completely relaxes the contact pressure and introduces an additional gap resistance; this may become a significant part of the total resistance to heat transfer. A theoretical method for predicting the gap resistance is derived in terms of the fin and tube dimensions, their physical properties, the fluid temperatures and heat-transfer coefficients, and the initial contact pressure. Test data on five finned-tube units representing embedded, tension-wound, and muff-type fins are given in graphical and tabular form. Very good agreement is found between theory and test in two of the interference-fit units. The other two show only fair agreement.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献