Thermal-Contact Resistance in Finned Tubing

Author:

Gardner Karl A.1,Carnavos T. C.2

Affiliation:

1. The Griscom-Russell Company

2. Research-Test Department, The Griscom-Russell Company, Massillon, Ohio

Abstract

Interference-fit finned tubes depend for their heat-transfer capability upon a contact pressure between fin and tube. The bond resistance under such conditions is relatively small compared to the other resistances in the heat-flow path. At elevated temperatures, however, differential thermal expansion between fins and tubes completely relaxes the contact pressure and introduces an additional gap resistance; this may become a significant part of the total resistance to heat transfer. A theoretical method for predicting the gap resistance is derived in terms of the fin and tube dimensions, their physical properties, the fluid temperatures and heat-transfer coefficients, and the initial contact pressure. Test data on five finned-tube units representing embedded, tension-wound, and muff-type fins are given in graphical and tabular form. Very good agreement is found between theory and test in two of the interference-fit units. The other two show only fair agreement.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3