Frequency Effects on the TEHD Behavior of a Tilting-Pad Journal Bearing Under Dynamic Loading

Author:

Monmousseau P.1,Fillon M.1

Affiliation:

1. Laboratoire de Me´canique des Solides, UMR CNRS 6610, S.P.2M.I., BP 179, 86960 Futuroscope Cedex, France

Abstract

In this paper, a theoretical nonlinear analysis of a tilting-pad journal bearing is presented when both a dynamic load and a static load are applied. This analysis is performed under TEHD regime which takes into account both thermal behavior and elastic deformations of the bearing. A comparison between numerical maximum journal amplitudes and experimental data in the case of synchronous dynamic loading is carried out in order to justify the TEHD analysis. The influence of the dynamic loading frequency, which can occur because of vibrations in a turbomachinery, will be studied at a constant rotational speed (15,000 rpm) and for a low (200 N) and a high (2652 N) rotating load and for a periodic dynamic load. It will be shown that, for a critical frequency, the amplitude of the shaft orbit is maximum and this changes the behavior of the tilting-pad journal bearing. It is apparent that the application of the dynamic load generates a thermal transient regime. The increase in the maximum bearing temperature is larger for high dynamic loading response. Consequently, the behavior of the bearing is mainly modified during the first few seconds when the loading frequency is near the critical frequency.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Reference14 articles.

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3