Effect of Thermal Boundary Condition on Tilting Pad Journal Bearing Behavior

Author:

Suh JunhoORCID,Kim ChangwonORCID,Han Je-HeonORCID

Abstract

This research presents the effect of the thermal boundary condition on the tilting pad journal bearing characteristics. The thermal boundary condition includes the temperature around the bearing pad, spinning journal, and lubricant supply temperature. Change in bearing performance according to the temperature around each element constituting the bearing was analyzed without paying attention to how the actual thermal boundary conditions around the bearing are configured. High fidelity numerical model of tilting pad journal bearing is presented for (1) the analysis of heat generation in the thin film, (2) heat transfer in the lubricant, (3) heat flux flowing into the journal and pad, (4) temperature change in the journal and bearing, (5) the resultant thermal deformation, (6) change in the lubricant film thickness arising from the thermal deformation of journal and bearing pads, and (7) the resulting change in the heat generation in the thin film. To reach the steady state of the bearing–journal system, the Runge–Kutta scheme with adaptive time step is adopted where the dynamic and thermal system are solved simultaneously in multi-physics model. Performance change of the bearing according to three changes: (a) boundary temperature around shaft, (b) boundary temperature around bearing pads, and (c) lubricant supply temperature were investigated.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3