Control of Engine-Starts for Optimal Drivability of Parallel Hybrid Electric Vehicles

Author:

Kum Dongsuk1,Peng Huei2,Bucknor Norman K.3

Affiliation:

1. Cho Chun Shik Graduate School of Green Transportation, Korea Advanced Institute of Science and Technology, 2116-1 Eureka Hall, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea e-mail:

2. G036 Lay Automotive Laboratory, Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109-2133 e-mail:

3. Propulsion Systems Research Laboratory, General Motors R&D Center, Warren, MI 48091 e-mail:

Abstract

The pretransmission parallel hybrid electric vehicle (HEV) with a single electric motor requires relatively little changes from existing powertrain configurations. This configuration, however, has a challenging drivability issue during engine-starts because the electric motor must simultaneously provide the demanded propulsion torque and start the engine. Depending on the propulsion power level, such engine-start process may require a trade-off between drivability and quick start. The goal of this study is to find theoretical performance limits and corresponding optimal control strategies that achieve the balance between these two conflicting goals. We first develop a simplified parallel HEV powertrain model to predict the engine, clutch, and vehicle dynamics. Assuming that the clutch torque can be accurately estimated and perfectly cancelled, an optimal engine-start control problem is formulated to minimize engine-start time while supplying the driver demanded torque. This nonlinear constrained optimal control problem is solved both analytically and numerically. For some special cases, the optimization problem can be solved analytically to obtain a closed-form solution. For the numerical method, dynamic programming (DP) is used, and both analytical and numerical solutions show that selecting a proper level of constant clutch pressure is the key to achieve near-optimal drivability performance. Furthermore, the DP control policy is found to be time-invariant, and thus can be implemented in the form of a full state feedback controller.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3