An adaptive fuzzy coordinated control strategy for hybrid electric vehicles considering clutch wear and engine temperature variation

Author:

Gao Aiyun1ORCID,Fu Zhumu23,Tao Fazhan23

Affiliation:

1. School of Vehicle and Transportation Engineering Henan University of Science and Technology Henan China

2. School of Information Engineering Henan University of Science and Technology Henan China

3. Henan Key Laboratory of Robot and Intelligent Systems Henan University of Science and Technology Henan China

Abstract

AbstractAn improved method of clutch coordinated control based on the Kalman filter was proposed to solve the problem that the existing mode switching strategy of hybrid electric vehicles could not adapt to engine temperature changes and clutch wear. First, taking advantage of the relationship between the torque transmitted by the clutch and the starting resistance of the engine, combined with the characteristics of the clutch, the clutch wear was roughly calculated. Accordingly, the control strategy of the clutch in the existing mode switching was improved to adapt to the clutch wear. The adaptive control strategy proposed for clutch wear included the fuzzy control module of the initial engagement pressure, the fuzzy inference module of the clutch engaging pressure change, the clutch wear estimation module and so on. Second, the Kalman filter was used to process the results to improve the estimation accuracy of clutch wear. The engine starting resistance related to starting speed and temperature was modeled to enhance the adaptability of the control strategy to engine temperature. Finally, the designed control strategy was verified in simulation. The results show that the improved control strategy can complete the mode switching when the engine temperature is variable and the clutch is worn. The maximum impact degree increased from 5 m/s3 without wear to 8.5 m/s3 with wear, but it is still less than the index limit, and it can be considered that the proposed strategy can achieve the desired control effect. The fuzzy control algorithm proposed enhances the vehicle's ride comfort during mode switching from pure electric driving to hybrid driving.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3