Polishing Characteristics of Transparent Polycrystalline Yttrium Aluminum Garnet Ceramics Using Magnetic Field-Assisted Finishing

Author:

Ross Daniel1,Wang Yanming1,Ramadhan Hadyan1,Yamaguchi Hitomi2

Affiliation:

1. Department of Mechanical and Aerospace Engineering, University of Florida, 226 MAE-B, P.O. Box 116300, Gainesville, FL 32611 e-mail:

2. Fellow ASME Department of Mechanical and Aerospace Engineering, University of Florida, 226 MAE-B, P.O. Box 116300, Gainesville, FL 32611 e-mail:

Abstract

Transparent polycrystalline yttrium aluminum garnet (YAG) ceramics have garnered an increased level of interest for high-power laser applications due to their ability to be manufactured in large sizes and to be doped in relatively substantial concentrations. However, surface characteristics have a direct effect on the lasing ability of these materials, and a lack of a fundamental understanding of the polishing mechanisms of these ceramics remains a challenge to their utilization. The aim of this paper is to study the polishing characteristics of YAG ceramics using magnetic field-assisted finishing (MAF). MAF is a useful process for studying the polishing characteristics of a material due to the extensive variability of, and fine control over, the polishing parameters. An experimental setup was developed for YAG ceramic workpieces, and using this equipment with diamond abrasives, the surfaces were polished to subnanometer scales. When polishing these subnanometer surfaces with 0–0.1 μm mean diameter diamond abrasive, the severity of the initial surface defects governed whether improvements to the surface would occur at these locations. Polishing subnanometer surfaces with colloidal silica abrasive caused a worsening of defects, resulting in increasing roughness. Colloidal silica causes uneven material removal between grains and an increase in material removal at grain boundaries causing the grain structure of the YAG ceramic workpiece to become pronounced. This effect also occurred with either abrasive when polishing with iron particles, used in MAF to press abrasives against a workpiece surface, that are smaller than the grain size of the YAG ceramic.

Funder

Air Force Office of Scientific Research

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Process Chemistry and Technology,Mechanics of Materials

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3