Conjugate Heat Transfer Analysis of an Engine Internal Cavity

Author:

Montenay A.1,Paté L.1,Duboué J. M.1

Affiliation:

1. Snecma, Moissy-Cramayel, France

Abstract

The analysis of heat transfer in engine cavities or blade internal cooling systems is one of the most challenging work for aircraft engines designers for two main reasons. Firstly, the efficiency of such systems has a direct influence on both life and performance of these engines. Secondly, the available tools to predict heat transfer in both solid parts and surrounding cooling gases, i.e. Navier Stokes and conduction codes, are often used independently. An interaction model between the fluid and solid media is generally required and remains a difficult issue in engine configurations. A coupling procedure between a Navier-Stokes code and a conduction solver is therefore the only way to achieve heat transfer predictions in all flow situations. The objective of this work is to present such a procedure, which has been developed at Snecma and based on a Finite Volume Navier-Stokes code and a commercial Finite Element solver. The first application showed in the paper demontrates, with an uncoupled calculation that the Navier-Stokes code MSD, from ONERA, is able to predict heat transfer with an acceptable accuracy. The discretization used in the solid to predict heat conduction is briefly presented. Then the steady state coupling procedure is exposed and validated with an analytical solution. Finally, a conjugate heat transfer computation in a rotor/rotor cavity of a real engine, with rotating solid disks, is described in detail.

Publisher

American Society of Mechanical Engineers

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A fast fluid–solid coupled heat transfer algorithm based on dividing the development stages of the flow field;International Journal of Heat and Fluid Flow;2024-07

2. An adaptive fluid-solid coupling time step control algorithm for unsteady conjugate heat transfer;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2024-03-27

3. Transient Aero-Thermo-Mechanical Multidimensional Analysis of a High Pressure Turbine Assembly Through a Square Cycle;Journal of Engineering for Gas Turbines and Power;2021-03-31

4. Development and Validation of Fluid-Thermal Interaction Solver for High Fidelity Transient Simulations;AIAA AVIATION 2020 FORUM;2020-06-08

5. A fully implicit conjugate heat transfer method;Numerical Heat Transfer, Part B: Fundamentals;2020-05-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3