An adaptive fluid-solid coupling time step control algorithm for unsteady conjugate heat transfer

Author:

Cai Feixue1ORCID,Zhang Long1,Zhou Hua1ORCID,Yao Min1,Ren Zhuyin12

Affiliation:

1. Institute for Aero Engine, Tsinghua University, Beijing, China

2. Center for Combustion Energy, Tsinghua University, Beijing, China

Abstract

Unsteady simulation with conjugate heat transfer has to tackle the stiffness issue that originates from the wide disparate time scales between fluid and solid heat transfer. In the loosely coupled framework, challenges remain in determining the optimal coupling time step between the fluid and solid solvers, in terms of efficiency and accuracy. This study formulates a correlation for the coupling error, together with the Proportional-Integral-Derivative (PID) control method, to propose an adaptive fluid-solid coupling time step algorithm, which dynamically adjusts the coupling time step such that the computational efficiency can be improved without sacrificing accuracy. The proposed algorithm has been tested in a 1D conjugate heat transfer application with typical operating conditions of a real engine, and the performance of different controllers (I, PI, PID) has been analyzed and compared. Results show that with the closed-loop control, all controllers can ensure the error control below the user specified tolerance at the cost of reducing efficiency. Meanwhile, with the open-loop control which is of more interest to practical applications, controllers suffer from instability issues when a conventional algorithm based on integration error is employed. The proposed coupling-error-based algorithm successfully tackles the instability issues. Compared with the baseline algorithm of the constant coupling time step, the proposed algorithm can reduce approximately 40%–90% computational cost for the 1D cases considered.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3