A Comparative Study of Optimisation Methods for Aerodynamic Design of Turbomachinery Blades

Author:

Shahpar Shahrokh1

Affiliation:

1. Rolls-Royce plc., Derby, U.K.

Abstract

A new approach to three-dimensional design of turbomachinery blades is presented. A number of heuristic and gradient based optimisers are used in conjunction with a linear sensitivity analysis tool, FAITH, to re-design a turbine nozzle guide vane. A novel linear approach is used to eliminate the large computational costs usually associated with function evaluations which are essentially solutions to the Navier-Stokes equations. Results are compared with those obtained previously from the inverse design mode of FAITH. With the present approach, it is shown that nonlinear complicated cost functions can be reduced significantly and aerodynamic and geometrical constraints can be handled easily and efficiently.

Publisher

American Society of Mechanical Engineers

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A review on aerodynamic optimization of turbomachinery using adjoint method;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2024-01-23

2. Aerodynamic optimization of through-flow design model of a high by-pass transonic aero-engine fan using genetic algorithm;Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy;2017-09-13

3. Multi-objective optimization of turbomachinery using improved NSGA-II and approximation model;Computer Methods in Applied Mechanics and Engineering;2011-02

4. Aerodynamic design by jointly applying S2 flow surface calculation and modern optimization methods on multistage axial turbine;Frontiers of Energy and Power Engineering in China;2008-03

5. Analysis and Optimization of Transonic Centrifugal Compressor Impellers Using the Design of Experiments Technique;Journal of Turbomachinery;2006-09-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3