Analysis and Optimization of Transonic Centrifugal Compressor Impellers Using the Design of Experiments Technique

Author:

Bonaiuti Duccio1,Arnone Andrea1,Ermini Mirco1,Baldassarre Leonardo2

Affiliation:

1. “Sergio Stecco” Department of Energy Engineering, University of Florence, 50139 Florence, Italy

2. GE Nuovo Pignone, 50127 Florence, Italy

Abstract

The turbomachine industry is increasingly interested in developing automated design procedures that are able to summarize current design experience, to take into account manufacturing limitations and to define new rules for improving machine performance. In this paper, a strategy for the parametric analysis and optimization of transonic centrifugal impellers was developed, using the technique of the design of experiments coupled with a three dimensional fluid-dynamic solver. The geometrical parameterization was conducted using Bezier curves and a few geometrical parameters, which were chosen after a screening analysis in order to determine the most significant ones. The range of variation of the parameters was defined taking into account the manufacturing requirements. The analysis of the influence of such parameters on the main impeller performance was subdivided into two steps: first, the effect of the parameters acting on the blade shape was investigated and an optimum configuration was chosen, then the influence of three functional parameters was analyzed, fixing the already optimized variables. The whole strategy aimed at an industrial design approach, and attention was focused on the time required in the design process. From the present analysis it was possible not only to define an optimum geometry, but also to understand the influence of the input parameters on the main machine performance.

Publisher

ASME International

Subject

Mechanical Engineering

Reference14 articles.

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3