Disc Design and Air System Comparison Between a Single and a Two Stage High Pressure Turbine Aero Engine

Author:

Ahmad Fathi1,Mirzamoghadam Alexander V.2

Affiliation:

1. Merkle & Partner, Heidenheim, Germany

2. Siemens Westinghouse Power Corp., Orlando, FL

Abstract

The design of the high pressure turbine (HPT) module of an aero engine and the method used to predict disc life and burst margin are different among the manufactures. In this paper, two different disc design methods are presented and compared, namely, the strain instability and the Chambers methods. The results of the disc study show that the strain instability method introduces low disc weight compared to the Chambers method. Both methods satisfy the burst speed requirement of 125% of the red line limit speed. The strain instability method was applied to design the disc of a single stage (SS) and of a two stage (TS) HPT configuration. The design philosophy of the SS is to run the HPT with a high rpm and a low SOT, whereas the TS design is based on low rpm and high SOT. The disc preliminary design considered the mechanical boundary conditions only without a temperature gradient. The total boundary conditions (thermal and mechanical) were then applied to the detailed disc design. A comparison between the two applied air systems of the SS and the TS design configuration was also performed. In comparing the two, the SS presents a design with low cooling air consumption, and it is also found that a cover plate is necessary for the front side of the SS configuration. The results of this study could be useful for the design engineer to know how and what is needed to accomplish a safe and effective design. Complementary thermal and structural tests should be performed to identify the limits and benefits of each approach.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3