Affiliation:
1. Beijing University of Aeronautics and Astronautics, Beijing, P. R. China
Abstract
This paper reports an experimental investigation of the three-dimensional turbulent flow downstream of a single-stage axial compressor rotor. The flow fields were measured at two axial locations in the rotor-stator gap at different mass-flow conditions. Both hot-wire probe and fast-response pressure probe were employed to survey the flow structure.
At the design condition, substantial flow blockage, turbulence, loss and aerodynamic noise mainly occur in the tip mid-passage, the rotor wake and at the hub corner of the suction surface. The radial component is the highest of the three turbulence intensities at 15% axial chord downstream of the trailing edge. With the flow downstream, the radial turbulence components decay fast. Interactions of the tip leakage vorticities and the rotor wake are found at 30% axial chord downstream of the trailing edge.
With the mass-flow decrease, the turbulence intensities and shear stresses become stronger, while the radial components increase fast.
The flow separation and tangential migration of the low-energy fluids at the tip corner of the suction surface play an important role in the tip flow field at a low mass-flow condition.
Publisher
American Society of Mechanical Engineers
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献