Experimental Analysis of Small Diameter Brush Seals and Comparisons With Theoretical Predictions

Author:

Deville Lilas1,Arghir Mihaï1

Affiliation:

1. PPRIME Institute, UPR CNRS 3346, Université de Poitiers, ENSMA ISAE, Chasseneuil Futuroscope 86962, France

Abstract

The paper presents the experimental results obtained for brush seals of 38 mm diameter operating with air at pressure differences up to 7 bars and rotation frequencies up to 500 Hz. The seals had bristles of 70 μm diameter, made of Haynes 25. Seals with two radial interferences (0 and 100 μm) between the brush and the rotor were tested. The presented running in procedure underlines the influence of the initial wear on the brush temperatures. The test results consisted of leakage mass flow rates. The temperatures of a limited number of points on the brush and on the rotor were also recorded. The results confirmed the important impact of the radial interference on the leakage. The test data were further confronted with theoretical predictions obtained with an original model. The model considers the brush as a deformable porous medium. Its local porosity and permeability are obtained from a fluid–structure interaction between the bristle pack and the leakage flow. The comparisons showed nearly close values of the mass flow rates. The differences between experimental and theoretical predictions are considered to be due to an underestimation of the porosity because the model neglects the friction forces between bristles and between the bristles and the rotor.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3