Evaluating Gas Turbine Performance Using Machine-Generated Data: Quantifying Degradation and Impacts of Compressor Washing

Author:

Igie Uyioghosa1,Diez-Gonzalez Pablo2,Giraud Antoine2,Minervino Orlando2

Affiliation:

1. School of Aerospace, Transport and Manufacturing (SATM), Cranfield University, Bedfordshire MK43 0AL, UK e-mail:

2. School of Aerospace, Transport and Manufacturing (SATM), Cranfield University, Bedfordshire MK43 0AL, UK

Abstract

Gas turbine (GT) operators are often met with the challenge of utilizing and making meaning of the vast measurement data collected from machine sensors during operation. This can easily be about 576 × 106 data points of gas path measurements for one machine in a base load operation in a year, if the width of the data is 20 columns of measured and calculated parameters. This study focuses on the utilization of large data in the context of quantifying the degradation that is mostly related to compressor fouling, in addition to investigations on the impact of offline and online compressor washing. To achieve this, four GT engines operating for about 3.5 years with 51 offline washes and 1184 occasions of online washes were examined. This investigation includes different wash frequencies, liquid concentrations, and one engine operation without online washing (only offline). This study has involved correcting measurement data not only just with compressor inlet temperatures (CITs) and pressures but also with relative humidity (RH). turbomatch, an in-house GT performance simulation software has been implemented to obtain nondimensional factors for the corrections. All of the data visualization and analysis have been conducted using tableau analytics software, which facilitates the investigation of global and local events within an operation. The concept of using of handles and filters is proposed in this study, and it demonstrates the level of insight to the data and forms the basis of the outcomes obtained. This work shows that during operation, the engine performance is mostly deteriorating, though to varying degrees. Online washing also showed an influence on this, reducing the average degradation rate each hour by half, when compared to the engine operating only with offline washing. Hourly marginal improvements were also observed with an increased average wash frequency of nine hours and a similar outcome obtained when the washing solution is 2.3 times more concentrated. Clear benefits of offline washes are also presented, alongside the typically obtainable values of increased power output after a wash, also in relation to the number of operating hours before a wash.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference17 articles.

1. Condition Monitoring and Its Effects on the Life of New Advanced Gas Turbines;Global Gas Turbine News,2002

2. Impact of Inlet Filter Pressure Loss on Single and Two-Spool Gas Turbine Engines for Different Control Modes;ASME J. Eng. Gas Turbines Power,2014

3. Performance Deterioration in Industrial Gas Turbines;ASME J. Eng. Gas Turbines Power,1992

4. Industrial Gas Turbine Performance: Compressor Fouling and On-Line Washing;ASME J. Turbomach.,2014

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3