Liquid film formation: prediction accuracy of different numerical approaches

Author:

Agati Giuliano,Evangelisti Adriano,Gabriele Serena,Rispoli Franco,Venturini Paolo,Borello Domenico

Abstract

Abstract In counteracting fouling phenomenon in gas turbines, which leads to system inefficiencies and performance degradation, water washing technique is very often adopted. Water droplets sprays are injected and, hitting the solid surfaces, remove the dirt deposition. Among the collateral undesirable phenomena related to water washing, blades erosion and liquid film formation are the most remarkable. Despite the former issue was extensively assessed by the authors in previous works, up to the authors’ knowledge the risk of liquid film formation due to water washing was scarcely investigated. Liquid film formation and spreading on a solid surface is a complex phenomenon involving a large number of physical events, such as: droplets impact on a solid surface, splashing phenomena, liquid film dragging under the effect of the carrier phase and droplets separation from the film in proximity of geometry discontinuities. In this paper, an extensively used experimental test case involving all these phenomena was used to test different numerical wall film models available in literature. The test case consists in the injection of a liquid jet in a high velocity crossflow. Some of the liquid jet mass impacts on the opposite solid surface generating a wall film which develops under the dragging effect of the crossflow. A Lagrangian approach was used to track the suspended droplets within the flow field by also considering the turbulent dispersion by means of a Random Walk model. Droplets-wall interaction is considered according to the Stanton-Rutland model, which provides the outcome of a collision (deposit, rebound or splashing), depending on the local impact conditions. If a droplet sticks on a solid boundary, a liquid film generates. Droplets atomization is also accounted for by using the Madabhushi model while Friederich separation model was selected to take into account the detachment of droplets from the film at the geometry edge. Three different numerical simulations have been performed based on different approaches used to solve the liquid film evolution, namely Eulerian one-way coupling, Eulerian two-way coupling and Lagrangian two-way coupling. Numerical results have been compared with the experimental ones from both a qualitative and a quantitative point of view. The wall film shape, its spatial distribution and the variation of the film thickness of the wall centreline have been compared between experimental and numerical simulations proving that the Lagrangian 2-way coupling approach better reproduces the liquid film dynamics observed in the experiments.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference38 articles.

1. Predicting gas turbine performance degradation due to compressor fouling using computer simulation technique;Aker;Journal of Engineering for Gas Turbines and Power,1989

2. GE gas turbine performance characteristics;Brooks,2000

3. Compressor washing economic analysis and optimization for power generation;Aretakis;Applied Energy,2012

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Liquid Film Formation Influence on Erosion Induced in an Axial Compressor Subject to Water Washing;Proceeding of 10th International Symposium on Turbulence, Heat and Mass Transfer, THMT-23, Rome, Italy, 11-15 September 2023;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3