Modal Analysis Method for Blisks Based on Three-Dimensional Blade and Two-Dimensional Axisymmetric Disk Finite Element Model

Author:

Pan Wangbai1,Tang Guoan1,Zhang Meiyan1

Affiliation:

1. Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China e-mail:

Abstract

In this paper, a novel and efficient modal analysis method is raised to work on blisk structures based on mixed-dimension finite element model (MDFEM). The blade and the disk are modeled separately. The blade model is figured by 3D solid elements considering its complex configuration and its degrees-of-freedom (DOFs) are condensed by dynamic substructural method. Meanwhile, the disk is structured by 2D axisymmetric element developed specially in this paper. The DOFs of entire blisk are tremendously reduced by this modeling approach. The key idea of this method is derivation of displacement compatibility to different dimensional models. Mechanical energy equivalence and summation further contribute to the model synthesis and modal analysis of blade and disk. This method has been successfully applied on the modal analysis of blisk structures in turbine, which reveals its effectiveness and proves that this method reduces the computational time expenses while maintaining the precision performances of full 3D model. Though there is limitation that structure should have proper coverage of blades, this method is still feasible for most blisks in engineering practice.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference31 articles.

1. Finite Element Dynamic Analysis of Practical Discs;J. Sound Vib.,1978

2. Dynamics of Rotationally Periodic Structures;Int. J. Numer. Methods Eng.,1979

3. Natural Mode Analysis of Blades-Disk Coupled Systems—Modal Synthesis of Symmetric Structure With C-N Group;Acta Mech. Solida Sin.,1988

4. A Numerical Method for the Prediction of Bladed Disk Forced Response;ASME J. Eng. Gas Turbines Power,1997

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3