Blade Arrangement Optimization for Mistuned Bladed Disk Based on Gaussian Process Regression and Genetic Algorithm

Author:

Pan Wangbai1,Zhang Meiyan2,Tang Guoan2

Affiliation:

1. Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China; Aerospace System Engineering Shanghai, Shanghai 201109, China

2. Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China

Abstract

AbstractMistuning phenomena exist in the bladed disk due to the inevitable deviations among blades' properties, e.g., stiffness, mass, geometry, etc., leading to localization and response amplification. The dynamic performance of mistuned bladed disk is sensitive to the arrangement of blades. The blade arrangement optimization aims to obtain the optimal arrangement that minimizes the influence of mistuning. In this paper, a framework of high efficiency is raised to deal with the challenge of high computational cost this optimization. It comprehensively utilizes mixed-dimensional finite element model (MDFEM), Gaussian process (GP) regression, and genetic algorithm (GA). The MDFEM can perform mistuned modal analysis efficiently and provides the training set of GP regression rapidly. The GP model, as a surrogate model, predicts the desired dynamic performance directly without calculating the numerical model and can function as fitness function in optimization. GA has the capability to deal with combinatorial problems and is a good option for problems with large search domains and several local maxima/minima. The techniques and processes of three methods are illustrated in detail. Case studies, based on a real turbine, are concretely presented in a gradually progressive manner to test and verify the effectiveness, accuracy, and efficiency of methods and entire framework step by step. The results show the satisfactory optimal arrangement for a randomly chosen set of mistuned blades, and the influence of mistuning is reduced indeed. The time cost of the optimization has been reduced several orders of magnitude. This framework can be a promising approach for the blade arrangement optimization problem.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3