Damage Identification of Beams Using a Continuously Scanning Laser Doppler Vibrometer System

Author:

Chen Da-Ming1,Xu Y. F.1,Zhu W. D.2

Affiliation:

1. Department of Mechanical Engineering, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 e-mail:

2. Professor Fellow ASME Division of Dynamics and Control, School of Astronautics, Harbin Institute of Technology, P.O. Box 137, Harbin 150001, China; Department of Mechanical Engineering, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 e-mail:

Abstract

A continuously scanning laser Doppler vibrometer (CSLDV) system is capable of rapidly obtaining spatially dense operating deflection shapes (ODSs) by continuously sweeping a laser spot from the system over a structure surface. This paper presents a new damage identification methodology for beams that uses their ODSs under sinusoidal excitation obtained by a CSLDV system, where baseline information of associated undamaged beams is not needed. A curvature damage index (CDI) is proposed to identify damage near a region with high values of the CDI at an excitation frequency. The CDI uses the difference between curvatures of ODSs (CODSs) associated with ODSs that are obtained by two different CSLDV measurement methods, i.e., demodulation and polynomial methods; the former provides rapid and spatially dense ODSs of beams, and the latter provides ODSs that can be considered as those of associated undamaged beams. Phase variables are introduced to the two methods for damage identification purposes. Effects of the order in the polynomial method on qualities of ODSs and CODSs are investigated. A convergence index and a criterion are proposed to determine a proper order in the polynomial method. Effects of scan and sampling frequencies of a CSLDV system on qualities of ODSs and CODSs from the two measurement methods are investigated. The proposed damage identification methodology was experimentally validated on a beam with damage in the form of machined thickness reduction. The damage and its region were successfully identified in neighborhoods of prominent peaks of CDIs at different excitation frequencies.

Funder

National Science Foundation

Publisher

ASME International

Subject

General Engineering

Reference23 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3