Experimental and Numerical Investigation of Structural Damage Detection Using Changes in Natural Frequencies

Author:

Xu G. Y.1,Zhu W. D.1,Emory B. H.1

Affiliation:

1. Department of Mechanical Engineering, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250

Abstract

A robust iterative algorithm is used to identify the locations and extent of damage in beams using only the changes in their first several natural frequencies. The algorithm, which combines a first-order, multiple-parameter perturbation method and the generalized inverse method, is tested extensively through experimental and numerical means on cantilever beams with different damage scenarios. If the damage is located at a position within 0–35% or 50–95% of the length of the beam from the cantilevered end, while the resulting system equations are severely underdetermined, the minimum norm solution from the generalized inverse method can lead to a solution that closely represents the desired solution at the end of iterations when the stiffness parameters of the undamaged structure are used as the initial stiffness parameters. If the damage is located at a position within 35–50% of the length of the beam from the cantilevered end, the resulting solution by using the stiffness parameters of the undamaged structure as the initial stiffness parameters deviates significantly from the desired solution. In this case, a new method is developed to enrich the measurement information by modifying the structure in a controlled manner and using the first several measured natural frequencies of the modified structure. A new method using singular value decomposition is also developed to handle the ill-conditioned system equations that occur in the experimental investigation by using the measured natural frequencies of the modified structure.

Publisher

ASME International

Subject

General Engineering

Reference53 articles.

1. Farrar, C. R., and Sohn, H., 2001, “Condition/Damage Monitoring Methodologies,” Invited Talk, LA-UR-01-6573. The Consortium of Organizations for Strong Motion Observation Systems (COSMOS) Workshop, Emeryville, CA.

2. A Summary Review of Vibration-Based Damage Identification Methods;Doebling;Shock Vib. Dig.

3. Overview of Nondestructive Evaluation Technologies;Thomas;Proc. SPIE

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3