Synthesis of Compliant Mechanisms for Path Generation using Genetic Algorithm

Author:

Saxena Anupam1

Affiliation:

1. Mechanical Engineering, Indian Institute of Technology, Kanpur 208016, India

Abstract

In this paper is described a procedure to synthesize the optimal topology, shape, and size of compliant continua for a given nonlinear output path. The path is prescribed using a finite number of distinct precision points much in accordance with the synthesis for path generation in traditional kinematics. Geometrically nonlinear analysis is employed to model large displacements of the constituent members. It is also essential to employ nonlinear analysis to allow the output port to negotiate the prescribed path accurately. The topology synthesis problem is addressed in its original binary form in that the corresponding design variables are only allowed to assume values of “0” for no material and “1” for the material present at a site in the design region. Shape and size design variables are modeled using continuous functions. Owing to the discrete nature of topology design variables, since gradient based optimization methods cannot be employed, a genetic algorithm is used that utilizes only the objective values to approach an optimum solution. A notable advantage of a genetic algorithm over its gradient based counterparts is the implicit circumvention of nonconvergence in the large displacement analysis, which is another reason why a genetic algorithm is chosen for optimization. The least squared objective is used to compare the design and desired output responses. To allow a user to specify preference for a precision point, individual multiple least squared objectives, same in number as the precision points are used. The multiple objectives are solved using Nondominated Sorting in Genetic Algorithm (NSGA-II) to yield a set of pareto optimal solutions. Thus, multiple solutions for compliant mechanisms can be obtained such that a mechanism can traverse one or some precision points among those specified more precisely. To traverse the entire path, a solution that minimizes the sum of individual least square objectives may be chosen. Synthesis examples are presented to demonstrate the usefulness of the proposed method that is capable of generating a solution that can be manufactured as is without requiring any interpretation.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference40 articles.

1. A loop-closure theory for the analysis and synthesis of compliant mechanisms;Howell;ASME J. Mech. Des.

2. Designing Compliant Mechanisms;Ananthasuresh;Mech. Eng. (Am. Soc. Mech. Eng.)

3. Strategies for Systematic Synthesis of Compliant MEMS;Ananthasuresh

4. Topological Synthesis of Compliant Mechanisms using Multi-Criteria Optimization;Frecker;ASME J. Mech. Des.

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3