On the Numerical Modelling of the Non Linear Behaviour of a Wave Energy Converter

Author:

Babarit Aure´lien1,Mouslim Hakim1,Cle´ment Alain1,Laporte-Weywada Pauline2

Affiliation:

1. Ecole Centrale de Nantes, Nantes, France

2. Institut Supe´rieur de Me´canique de Paris, Saint Ouen, France

Abstract

Wave energy converters of the wave activated body class are designed to have large amplitudes of motion, even in moderate sea states, because their efficiency is directly related with the amplitude of their motion. Hence, classical seakeeping numerical tools based on linear potential theory, which are widely used in the design process of offshore structures, are not accurate enough in the case of wave energy conversion. So, large differences between numerical predictions and wave tank experiments are often observed. On the other hand, the use of CFD models theoretically able to provide more accurate results is still difficult for wave energy applications, mainly because this requires a huge computation time. Moreover, it is well known that viscous solver have difficulties in propagatating gravity waves accurately. In this paper, we assess the potential of two advanced hydro-dynamic numerical models in the numerical modelling of wave energy converters. These numerical models are expected to provide more accurate results than classical linear theory based numerical models and faster results than CFD models. Particularly, these tools are expected to be able to deal efficiently with large motions of wave energy converters. In the first one, the hydrostatic forces and the Froude-Krylov forces are computed on the exact wetted surface of the wave energy converter, whereas radiation and diffraction forces are computed using the standard linear potential theory. Using this model, it is shown that we were able to predict the parametric roll phenomenon in the case of the SEAREV wave energy converter. In the second one, a Navier Stokes solver, based on RANS equations, is used. Comparisons are made with experiments and it is showed that this tool is able to model quite accurately viscous effects such as slamming. However, computation time is found to be long with this last tool.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3