Gravity effects in two-dimensional and axisymmetric water impact models

Author:

Hulin F.ORCID,Del Buono A.,Tassin A.ORCID,Bernardini G.ORCID,Iafrati A.ORCID

Abstract

The effect of gravity during the water entry of two-dimensional and axisymmetric bodies is investigated analytically and numerically. An extension to the Wagner model of water impact is proposed in order to take into account the effect of gravity. For this purpose, the free-surface condition is modified. The pressure is computed using the modified Logvinovich model of Korobkin (Eur. J. Appl. Maths, vol. 6, 2004, pp. 821–838). The model has been implemented and validated through comparisons with fully nonlinear potential flow simulations of different two-dimensional and axisymmetric water entry problems. Our investigation shows that it is equally important to account for gravity when computing the pressure distribution and to account for gravity when computing the size of the wetted surface in order to obtain accurate force results with the Wagner model. Simulations of wedges and cones with different values of deadrise angle ( $\beta$ ) entering water at constant speed ( $V$ ) demonstrate the accuracy of the semi-analytical model and show that the effect of gravity in such water impacts is governed by the effective Froude number defined as $Fr^*=V/(\sqrt {gh}\sqrt {\tan \beta })$ , with $g$ the acceleration due to gravity and $h$ the penetration depth. The accuracy of the semi-analytical model for decelerated water entries is also demonstrated by investigating the water entry of a wedge and a cone with a $15^\circ$ deadrise angle with deceleration until full stop. The semi-analytical model is able to accurately predict the effect of gravity during both two-dimensional and axisymmetric water entry problems with deceleration.

Funder

ISblue project

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Reference35 articles.

1. Martin, L. , Jacques, V. & Paul, B. 2018 Application of the MLM to evaluate the hydrodynamic loads endured during the event of aircraft ditching. In 6th European Conference on Computational Mechanics (ECCM)-7th European Conference on Computational Fluid Dynamics (ECFD), Glasgow, UK, 11–15 June.

2. Water entry and exit of 2D and axisymmetric bodies

3. Babarit, A. , Mouslim, H. , Clément, A. & Laporte-Weywada, P. 2009 On the numerical modelling of the non linear behaviour of a wave energy converter. In International Conference on Offshore Mechanics and Arctic Engineering, vol. 43444, pp. 1045–1053.

4. Hydrodynamic loads during water entry of two-dimensional and axisymmetric bodies

5. Analytical models of water impact

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3