Affiliation:
1. Department of Mechanical Engineering, University of Connecticut, 191 Auditorium Road, Storrs, CT 06269-3139
Abstract
Thermal diffusion, the process by which a multicomponent mixture develops a concentration gradient when exposed to a temperature gradient, has been studied in order to understand if its inclusion is warranted in the modeling of single-wall carbon nanotubes (SWNTs) synthesis by thermal chemical vapor deposition (CVD). A fully coupled reactor-scale model employing conservation of mass, momentum, species, and energy equations with detailed gas phase and surface reaction mechanisms has been utilized to describe the evolution of hydrogen and hydrocarbon feed streams as they undergo transport, as well as homogeneous and heterogeneous chemical reaction within a CVD reactor. Steady state velocity, temperature, and concentration fields within the reactor volume are determined, as well as concentrations of adsorbed species and SWNT growth rates. The effect of thermodiffusion in differing reactor conditions has been investigated to understand the impact on SWNT growth. Thermal diffusion can have a significant impact on SWNT growth, and the first approximation of the thermal diffusion factor, based on the Chapman–Enskog molecular theory, is sufficient for modeling thermophoretic behavior within a CVD reactor. This effect can be facilitatory or inhibitory, based on the thermal and mass flux conditions. The results of this investigation are useful in order to optimize model and reactor designs to promote optimal SWNT deposition rates.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献