The Upper Bound Approach to Plane Strain Problems Using Linear and Rotational Velocity Fields—Part I: Basic Concepts

Author:

Avitzur Betzalel1,Pachla Waclaw2

Affiliation:

1. Institute for Metal Forming, Department of Metallurgy and Materials Engineering, Lehigh University, Bethlehem, Pa. 18015

2. High Pressure Research Center, Polish Academy of Sciences, “Unipress,” Warsaw, Poland

Abstract

This paper investigates an upper bound approach to plane strain deformation of a rigid, perfectly plastic material. In this approach the deformation region is divided into a finite number of rigid triangular bodies that slide with respect to one another. Neighboring rigid body zones are analyzed in specific cases where the zones are (1) both in rotational motion, (2) one in linear, the other in rotational motion and (3) both in linear motion. Specific equations are presented that describe surfaces of velocity discontinuity (shear boundaries) between the moving bodies, and the velocity discontinuities and shear power losses for each of the three cases. The shape of the surface of velocity discontinuity is uniquely determined by the velocity ratios of neighboring bodies, their relative directions of motion and, where applicable, the positions of their centers of rotation. Where one or both neighboring bodies exhibit rotational motion, the surface of velocity discontinuity is found to be a cylindrical surface. In the case of two neighboring bodies, each with linear motion, the surface of velocity discontinuity is found to be planar. The velocity discontinuity is found to be constant along the entire surface of velocity discontinuity. The characteristics of the surfaces of velocity discontinuity in plane strain deformation are investigated. The upper-bound approach to plane strain problems can be successfully adapted to real metal forming processes, including sheet and strip drawing, extrusion, forging, rolling, leveling, ironing, and machining.

Publisher

ASME International

Subject

General Medicine

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3