Film Cooling Effectiveness and Heat Transfer Near Deposit-Laden Film Holes

Author:

Lewis Scott1,Barker Brett1,Bons Jeffrey P.1,Ai Weiguo2,Fletcher Thomas H.2

Affiliation:

1. Department of Aerospace Engineering, Ohio State University, Columbus, OH 43235

2. Department of Chemical Engineering, Brigham Young University, Provo, UT 84602

Abstract

Abstract Experiments were conducted to determine the impact of synfuel deposits on film cooling effectiveness and heat transfer. Scaled up models were made of synfuel deposits formed on film-cooled turbine blade coupons exposed to accelerated deposition. Three distinct deposition patterns were modeled: a large deposition pattern (maximum deposit peak≅2 hole diameters) located exclusively upstream of the holes, a large deposition pattern (maximum deposit peak≅1.25 hole diameters) extending downstream between the cooling holes, and a small deposition pattern (maximum deposit peak≅0.75 hole diameter) also extending downstream between the cooling holes. The models featured cylindrical holes inclined at 30 deg to the surface and aligned with the primary flow direction. The spacing of the holes were 3, 3.35, and 4.5 hole diameters, respectively. Flat models with the same film cooling hole geometry and spacing were used for comparison. The models were tested using blowing ratios of 0.5–2 with a turbulent approach boundary layer and 0.5% freestream turbulence. The density ratio was approximately 1.1 and the primary flow Reynolds number at the film cooling row location was 300,000. An infrared camera was used to obtain the film cooling effectiveness from steady state tests and surface convective heat transfer coefficients using transient tests. The model with upstream deposition caused the primary flow to lift off the surface over the roughness peaks and allowed the coolant to stay attached to the model. Increasing the blowing ratio from 0.5 to 2 only expanded the region that the coolant could reach and improved the cooling effectiveness. Though the heat transfer coefficient also increased at high blowing ratios, the net heat flux ratio was still less than unity, indicating film cooling benefit. For the two models with deposition between the cooling holes, the freestream air was forced into the valleys in line with the coolant holes and degraded area-averaged coolant performance at lower blowing ratios. It is concluded that the film cooling effectiveness is highest when deposition is limited to upstream of the cooling holes. When accounting for the insulating effect of the deposits between the film holes, even the panels with deposits downstream of the film holes can yield a net decrease in heat flux for some cases.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3