A Procedure for Using DNS Databases

Author:

Parneix S.1,Laurence D.2,Durbin P. A.3

Affiliation:

1. Center for Turbulence Research, Stanford University, Stanford CA, 94305-3030

2. Electricite´ de France, DER, Laboratoire National d’Hydraulique, 6 quai Watier, 78400 Chatou, France

3. Mechanical Engineering, Stanford University, Stanford CA, 94305-3030

Abstract

A second moment closure (SMC) computation is compared in detail with the direct numerical simulation (DNS) data of Le et al. (1997) for the backstep flow at Re = 5100 in an attempt to understand why the intensity of the backflow and, consequently, the friction coefficient in the recirculation bubble are under-estimated. The data show that this recirculation bubble is far from being laminar except in the very near wall layer. A novel “differential a priori” procedure was used, in which the full transport equation for one isolated component of the Reynolds stress tensor was solved using DNS data as input. Conclusions are then different from what would have been deduced by comparing a full simulation to a DNS. In particular, the ε-equation, usually blamed for faults in model predictions, has been found to give excellent results in this case. In fact, the main problem comes from the uv-equation which predicts a too high turbulent force. A modification, by including the gradients of mean flow in the transport model, has then been attempted and has cured 50 percent of the backflow discrepancy.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3