Using data to build CFD-ready turbulence and heat flux closures
-
Published:2023
Issue:
Volume:
Page:12
-
ISSN:
-
Container-title:Proceeding of 10th International Symposium on Turbulence, Heat and Mass Transfer, THMT-23, Rome, Italy, 11-15 September 2023
-
language:
-
Short-container-title:
Reference34 articles.
1. K. Abe and K. Suga. Towards the development of a Reynolds-averaged algebraic turbulent scalar-flux model. Int. J. Heat Fluid Flow, 22(1):19-29, 2001.
2. A. Beck and M. Kurz. A perspective on machine learning methods in turbulence modeling. GAMM-Mitteilungen, 44(1):e202100002, 2021.
3. B. J. Daly and F. H. Harlow. Transport equations in turbulence. Phys. Fluids, 13(11):2634-2649, 1970.
4. C. Dong, C. C. Loy, K. He, and X. Tang. Learning a deep convolutional network for image super-resolution. In European conference on computer vision, pages 184-199. Springer, 2014.
5. K. Duraisamy. Perspectives on machine learning-augmented Reynolds-averaged and large eddy simulation models of turbulence. Phys. Rev. Fluids, 6(5):050504, 2021.