Abstract
Abstract
Parallel manipulators have broad application prospects on hybrid machine tools. Kinematic error modelling and identification are two key processes to improve the accuracy of parallel manipulators. The traditional kinematic error modelling method adopts the partial differentiation of the ideal kinematic model. However, the partial differentiation method is pure mathematical calculation, which ignores physical meaning of error terms corresponding to each link. In the process of error identification, the Jacobian matrix obtained from the partial differentiation method is usually ill-conditioned, which leads to non-convergence of the identification process. In order to solve the above problems, this paper proposes a new kinematic error modelling method and an error identification model. Firstly, the basic error terms for single link are analyzed. Based on basic error terms, the kinematic error model is established by using the practical connection point of two adjacent links. Then, a new error identification model is derived from the kinematic error model. Finally, as a study case, a 3-DOF parallel tool head is used to verify the correctness of the proposed method. The numerical results show that the proposed method is effective and the accuracy of the 3-DOF parallel tool head improves significantly after compensation of error terms.
Publisher
American Society of Mechanical Engineers
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献