Stall Margin Improvement in a Transonic Compressor With a Casing Treatment: Flow Mechanism

Author:

Hah Chunill1

Affiliation:

1. NASA Glenn Research Center , Cleveland, OH 44135

Abstract

Abstract A compressor casing treatment with circumferential casing grooves (CCGs) is studied in detail. The primary objective of the current paper is to unearth the main driving fluid mechanism that changes the stall margin in a transonic compressor with CCGs. Large eddy simulation (LES) is applied to calculate the transonic compressor flow fields with and without CCGs. The present investigation shows that CCGs reduce the mass flow through the tip gap by about 16% near the stall condition. Calculated flow fields show that most of this reduction of tip leakage flow occurs near the CCGs. Reinjected flow from the CCGs pushes the tip leakage flow radially inward below the casing and changes how the tip leakage flow collides with the incoming main passage flow. However, a detailed examination of the calculated flow in the tip region shows that the reinjected flow does not contribute to the reduction of the overall blockage generation. The primary driver for reducing blockage generation with CCGs is the reduction of overall mass flowrate through the tip gap. In the present investigation, measurements show a very small decrease in efficiency with CCGs at the design flow condition, although the difference in efficiency is within the measurement uncertainty. Results from the LES simulation at the design condition with CCGs show that the tip leakage vortex (TLV) is pulled toward the blade suction side and double leakage flow is eliminated. The result is that the simulated efficiencies with and without CCGs are almost the same.

Publisher

ASME International

Subject

Mechanical Engineering

Reference19 articles.

1. Effect of Casing Treatment on Overall and Blade-Element Performance of a Compressor Rotor;Moore,1971

2. Study of Casing Treatment Stall Margin Improvement Phenomena;Prince,1974

3. Stall Margin Improvement by Casing Treatment—Its Mechanism and Effectiveness;Takata;J. Eng. Power,1977

4. Influence of Casing Treatment on the Operating Range of Axial Compressors;Paulon,1982

5. Flow Phenomena in Compressor Casing Treatment;Smith;ASME J. Eng. Gas Turbines Power,1985

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3