Non-uniform flow characteristics and rotating instability of a transonic high-pressure compressor rotor with cavity bleed

Author:

Xu Chen1ORCID,Chen Shaowen1ORCID,Gong Yun1ORCID

Affiliation:

1. School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, China

Abstract

The presence of bleed in an aero engine’s compressor can significantly impact its flow characteristics and contribute to rotating instability. This study focuses on the impact of a typical cavity bleed structure on the internal flow characteristics of a compressor, specifically its circumferential non-uniformity and aerodynamic stability. A numerical simulation involving multiple flow passages was conducted on the transonic high-pressure rotor of the E3 compressor, considering its typical bleed structure. The study delves deep into the non-uniform flow characteristics and the mechanisms behind their generation in the compressor flow field. Furthermore, the influence of bleed on the rotating instability of the compressor is explored by comparing changes in compressor instability and adiabatic efficiency under uniform and non-uniform flow field conditions. The findings indicate that the axial position of the cavity bleed structure plays a crucial role in influencing key parameters such as rotor stall margin, peak efficiency, and total pressure ratio under near-stall conditions. The circumferential non-uniformity, resulting from the presence of the cavity bleed, intensifies with higher bleed air flow rates. For the upstream bleed configuration applied to the rotor, with a total bleed rate of 5%, the maximum variation in absolute flow angle at the inlet of different rotor channels can reach up to 1°. Additionally, the maximum difference in inlet flow coefficient can reach 0.0392. These findings demonstrate that the non-uniformity caused by the typical bleed structure leads to a loss in stall margin for the rotor when compared to a uniform flow field scheme.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3