Lateral Forces From Single Gland Rotor Labyrinth Seals in Turbines

Author:

Song Bum Ho1,Song Seung Jin1

Affiliation:

1. School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-742, Korea

Abstract

Even though interest in labyrinth seal flows has increased recently, an analytical model capable of predicting turbine flow response to labyrinth seals is still lacking. Therefore, this paper presents a new model to predict flow response in an axial turbine stage with a shrouded rotor. A concentric model is first developed, and this model is used to develop an eccentric model. Basic conservation laws are used in each model, and a nonaxisymmetric sealing gap is prescribed for the eccentric model. Thus, the two models can predict the evolution of a uniform upstream flow into a nonuniform downstream flow. In turbines with concentric shrouded rotors, the seal flow is retarded in the axial direction and tangentially underturned. In turbines with eccentric shrouded rotors, flow azimuthally migrates away from and pressure reaches its peak near the maximum sealing gap region. Finally, the rotordynamic implications of such flow nonuniformities are discussed and compared against eccentric unshrouded turbine predictions.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3