Investigation of Three-Dimensional Unsteady Flows in a Two-Stage Shrouded Axial Turbine Using Stereoscopic PIV—Kinematics of Shroud Cavity Flow

Author:

Il Yun Yong1,Porreca Luca2,Kalfas Anestis I.2,Jin Song Seung1,Abhari Reza S.2

Affiliation:

1. School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-742, Korea

2. Turbomachinery Laboratory, Swiss Federal Institute of Technology Zurich, Zurich CH-8092, Switzerland

Abstract

This paper presents an experimental study of the behavior of leakage flow across shrouded turbine blades. Stereoscopic particle image velocimetry and fast response aerodynamic probe measurements have been conducted in a low-speed two-stage axial turbine with a partial shroud. The dominant flow feature within the exit cavity is the radially outward motion of the main flow into the shroud cavity. The radial migration of the main flow is induced by flow separation at the trailing edge of the shroud due to a sudden area expansion. The radially outward motion is the strongest at midpitch as a result of interactions between vortices formed within the cavity. The main flow entering the exit cavity divides into two streams. One stream moves upstream toward the adjacent seal knife and reenters the main flow stream. The other stream moves downstream due to the interaction with the thin seal leakage flow layer. Closer to the casing wall, the flow interacts with the underturned seal leakage flow and gains swirl. Eventually, axial vorticity is generated due to these complex flow interactions. This vorticity is generated by a vortex tilting mechanism and gives rise to additional secondary flow. Because of these fluid motions combined with a contoured casing wall, three layers (the seal leakage layer, cavity flow layer, and main flow) are formed downstream of the shroud cavity. This result is different from the two-layer structure, which is found downstream of conventional shroud cavities. The seal leakage jet formed through the seal clearance still exists at 25.6% axial chord downstream of the second rotor. This delay of complete dissipation of the seal leakage jet and its mixing with the cavity flow layer is due to the contoured casing wall. Time-averaged flow downstream of the shroud cavity shows the upstream stator’s influence on the cavity flow. The time-averaged main flow can be viewed as a wake flow induced by the upstream stator whose separation at the shroud trailing edge induces pitchwise non-uniformity of the cavity flow.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3