Performance and Flow Characteristics of an Optimized Supercritical Compressor Stator Cascade

Author:

Song Bo1,Ng Wing F.1

Affiliation:

1. Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061

Abstract

An experimental and numerical study was performed on an optimized compressor stator cascade designed to operate efficiently at high inlet Mach numbers (M1) ranging from 0.83 to 0.93 (higher supercritical flow conditions). Linear cascade tests confirmed that low losses and high turning were achieved at normal supercritical flow conditions (0.7<M1<0.8), as well as higher supercritical flow conditions (0.83<M1<0.93), both at design and off-design incidences. The performance of this optimized stator cascade is better than those reported in the literature based on Double Circular Arc (DCA) and Controlled Diffusion Airfoil (CDA) blades, where losses increase rapidly for M1>0.83. A two-dimensional (2D) Navier-Stokes solver was applied to the cascade to characterize the performance and flow behavior. Good agreement was obtained between the CFD and the experiment. Experimental loss characteristics, blade surface Mach numbers, shadowgraphs, along with CFD flowfield simulations, were presented to elucidate the flow physics. It is found that low losses are due to the well-controlled boundary layer, which is attributed to an optimum flow structure associated with the blade profile. The multishock pattern and the advantageous pressure gradient distribution on the blade are the key reasons of keeping the boundary layer from separating, which in turn accounts for the low losses at the higher supercritical flow conditions.

Publisher

ASME International

Subject

Mechanical Engineering

Reference23 articles.

1. Highly Loaded Axial Flow Compressors: History and Current Developments;Wennerstrom;ASME J. Turbomach.

2. Loss Mechanism in Turbomachines;Denton;ASME J. Turbomach.

3. Dunham, J. , 1996, “Aerodynamic Losses in Turbomachines,” AGARD-CP-571, Loss Mechanism and Unsteady Flows in Turbomachines, K1–K13.

4. Development of Advanced Compressor Airfoils for Heavy-Duty Gas Turbines-Part I: Design and Optimization;Köller;ASME J. Turbomach.

5. Development of Advanced Compressor Airfoils for Heavy-Duty Gas Turbines-Part II: Experimental and Theoretical Analysis;Küsters;ASME J. Turbomach.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3