Modeling the Time Duration Until the Adoption of Residential Rooftop Solar Photovoltaic Systems

Author:

Hamed Mohammad M.1,Al-Masri Adnan2,Dalala Zakariya M.3,AlSaleh Raed J.2

Affiliation:

1. Department of Civil and, Environmental Engineering, German Jordanian University, Amman 11180, Jordan

2. Department of Civil and Environmental Engineering, German Jordanian University, Amman 11180, Jordan

3. Department of Energy Engineering, German Jordanian University, Amman 11180, Jordan

Abstract

Abstract This paper addresses two key decisions by households to adopt rooftop solar photovoltaic (PV) systems and the length of time until the adoption. It is hypothesized that these decisions are controlled by different mechanisms and should be modeled independently. This is the first attempt to formally estimate the length of time until the adoption to the authors’ knowledge. Two models are presented in this paper. The first is a mixed logit to model the respondents’ intention to adopt a solar PV system, and the second is a random parameters ordered probit to estimate the length of time until the adoption. Estimation results show that the number of electrical appliances, the households’ interest to harness economic benefits, and the type and characteristics of the dwelling motivate households to select a shorter duration until the adoption. Results also show that the majority (77.80%) of respondents with electric vehicles are highly likely to adopt a rooftop system and select a shorter time duration until adoption. In addition, a significant proportion (83.23%) of respondents with high monthly electricity bills is more likely to adopt a rooftop PV system and select a shorter time duration. Results show that the average monthly electricity bill for households with a PV system has decreased by 74.04%. Reducing monthly electricity bills is a key instigator for adopting a rooftop PV system. Our results confirm the hypothesis that even if there is an intent to adopt a rooftop solar PV system, the length of time until the adoption is controlled by another mechanism.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3