How to Quickly Evaluate the Thermodynamic Performance and Identify the Optimal Heat Source Temperature for Organic Rankine Cycles?

Author:

Yan Dong1,Yang Fubin1,Zhang Hongguang1,Xu Yonghong1,Wang Yan1,Li Jian2,Ge Zhong3

Affiliation:

1. Key Laboratory of Enhanced Heat Transfer, and Energy Conservation of MOE; Beijing Key Laboratory of Heat Transfer, and Energy Conversion; Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China

2. Key Laboratory for Thermal Science and Power Engineering of MOE; Beijing Key Laboratory for CO2 Utilization, and Reduction Technology, Tsinghua University, Beijing 100084, China

3. School of Architecture and Urban Planning, Yunnan University, Kunming 650091, China

Abstract

Abstract Organic Rankine cycle (ORC) is a promising technology to convert low- and medium-temperature energy into power. Identifying the optimal working fluids and heat source temperature are always the focuses in the ORC field. This paper presents a new methodology to evaluate the thermodynamic performance of ORC with different working fluids and identify the optimal heat source temperature. Initially, the parameterization model is developed to characterize the working fluids by thermodynamic property parameters including critical temperature (Tc), critical pressure (pc), acentric factor (ω), and ideal gas isobaric heat capacity (cp0). Subsequently, the simultaneous optimization of thermodynamic property parameters and cycle parameters is conducted to obtain the thermodynamic performance limits of simple and regenerative ORCs at six typical geothermal heat source temperatures. By comparing the thermodynamic performance limits of ORC under different heat source temperatures, the optimal heat source temperature is identified. Then, ten commonly used working fluids are selected as reference working fluids, and the thermodynamic property parameters comparisons between reference and ideal working fluids, which can be characterized by the optimized thermodynamic property parameters, are investigated. Finally, multiple linear regression models are developed to evaluate the thermodynamic performance. The numerical differences of thermodynamic property parameters between the ideal reference and reference working fluids are chosen as initial variables, while the thermal efficiency and volumetric power output are used as thermodynamic performance indicators. The results show that the optimal heat source temperature is 250 °C, which is independent of cycle configuration. The thermodynamic performance of ORCs can be evaluated accurately by the multiple linear regression models. The maximum relative error of the multiple linear regression models is 3.02%. Moreover, Tc is the most dominant thermodynamic property parameter.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Beijing Municipality

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3