Motion Synthesis Using Kinematic Mappings

Author:

Ravani B.1,Roth B.2

Affiliation:

1. Department of Mechanical Engineering, University of Wisconsin, Madison, Wisc. 53706

2. Department of Mechanical Engineering, Stanford University, Stanford, Calif. 94305

Abstract

This paper studies planar motion approximation problems in the context of a kinematic mapping. Since a planar displacement is determined by three parameters, it can be mapped into a point of a three-dimensional space. A (single-degree-of-freedom) planar motion can, therefore, be represented by a space curve in the space of the mapping and the problem of motion approximation becomes a curve fitting problem in this space. A mapping introduced by Blaschke is used and a general theory for planar motion approximation is developed. The theory is then applied to dimensional synthesis of four-link mechanisms. Furthermore, since the structural error (i.e., the quality of motion approximation) is dependent on the closeness of the fit in the space of the mapping, a general algebraic theory for determining closest fits to points in this space is developed. The theory is illustrated by a numerical example.

Publisher

ASME International

Subject

General Engineering

Cited by 97 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3