Data-Driven Calibration of Multifidelity Multiscale Fracture Models Via Latent Map Gaussian Process

Author:

Deng Shiguang1,Mora Carlos2,Apelian Diran1,Bostanabad Ramin2

Affiliation:

1. University of California ACRC, Materials Science and Engineering, , Irvine, CA 92697

2. University of California Mechanical and Aerospace Engineering, , Irvine, CA 92697

Abstract

Abstract Fracture modeling of metallic alloys with microscopic pores relies on multiscale damage simulations which typically ignore the manufacturing-induced spatial variabilities in porosity. This simplification is made because of the prohibitive computational expenses of explicitly modeling spatially varying microstructures in a macroscopic part. To address this challenge and open the doors for the fracture-aware design of multiscale materials, we propose a data-driven framework that integrates a mechanistic reduced-order model (ROM) with a calibration scheme based on random processes. Our ROM drastically accelerates direct numerical simulations (DNS) by using a stabilized damage algorithm and systematically reducing the degrees of freedom via clustering. Since clustering affects local strain fields and hence the fracture response, we calibrate the ROM by constructing a multifidelity random process based on latent map Gaussian processes (LMGPs). In particular, we use LMGPs to calibrate the damage parameters of an ROM as a function of microstructure and clustering (i.e., fidelity) level such that the ROM faithfully surrogates DNS. We demonstrate the application of our framework in predicting the damage behavior of a multiscale metallic component with spatially varying porosity. Our results indicate that microstructural porosity can significantly affect the performance of macro-components and hence must be considered in the design process.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference28 articles.

1. Latent Map Gaussian Processes for Mixed Variable Metamodeling;Oune;Comput. Methods Appl. Mech. Eng.,2021

2. Data Fusion With Latent Map Gaussian Processes;Eweis-Labolle;ASME J. Mech. Des.,2022

3. Transformation Field Analysis of Inelastic Composite Materials;Dvorak;Proc. R. Soc. London, A,1992

4. Nonuniform Transformation Field Analysis;Michel;Int. J. Solids Struct.,2003

5. Nonuniform Transformation Field Analysis of Elastic–Viscoplastic Composites;Roussette;Compos. Sci. Technol.,2009

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. GP+: A Python library for kernel-based learning via Gaussian processes;Advances in Engineering Software;2024-09

2. Multiscale Computational and Artificial Intelligence Models of Linear and Nonlinear Composites: A Review;Small Science;2024-03-19

3. Uncertainty Separation Method for Simulation With Image and Numerical Data;Journal of Verification, Validation and Uncertainty Quantification;2024-03-01

4. A Latent Variable Approach for Non-Hierarchical Multi-Fidelity Adaptive Sampling;Computer Methods in Applied Mechanics and Engineering;2024-03

5. Accounting for Machine Learning Prediction Errors in Design;Journal of Mechanical Design;2024-01-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3